29 research outputs found

    Velocity relaxation of a particle in a confined compressible fluid

    Get PDF
    The velocity relaxation of an impulsively forced spherical particle in a fluid confined by two parallel plane walls is studied using a direct numerical simulation approach. During the relaxation process, the momentum of the particle is transmitted in the ambient fluid by viscous diffusion and sound wave propagation, and the fluid flow accompanied by each mechanism has a different character and affects the particle motion differently. Because of the bounding walls, viscous diffusion is hampered, and the accompanying shear flow is gradually diminished. However, the sound wave is repeatedly reflected and spreads diffusely. As a result, the particle motion is governed by the sound wave and backtracks differently in a bulk fluid. The time when the backtracking of the particle occurs changes non-monotonically with respect to the compressibility factor and is minimized at the characteristic compressibility factor. This factor depends on the wall spacing, and the dependence is different at small and large wall spacing regions based on the different mechanisms causing the backtracking.Comment: 8 pages, 9 figure

    Mesoscale modeling of colloidal suspensions with adsorbing solutes

    Full text link
    We construct a mesoscale model of colloidal suspensions that contain solutes reversibly adsorbing onto the colloidal particle surfaces. The present model describes the coupled dynamics of the colloidal particles, the host fluid, and the solutes through the Newton-Euler equations of motion, the hydrodynamic equations, and the advection-diffusion equation, respectively. The solute adsorption is modeled through a square-well potential, which represents a short-range attractive interaction between a particle and a solute molecule. The present model is formulated to be solved through direct numerical simulations. Some numerical results are presented to validate the simulations. The present model enables investigations of solute adsorption effects in the presence of a fluid flow and an inhomogeneous solute concentration distribution.Comment: 9 pages, 7 figure

    Propagation of hydrodynamic interactions between particles in a compressible fluid

    Get PDF
    Hydrodynamic interactions are transmitted by viscous diffusion and sound propagation: the temporal evolution of hydrodynamic interactions by both mechanisms is studied by direct numerical simulation in this paper. The hydrodynamic interactions for a system of two particles in a fluid are estimated by the velocity correlation of the particles. In an incompressible fluid, hydrodynamic interactions propagate instantaneously at the infinite speed of sound, followed by the temporal evolution of viscous diffusion. On the other hand, in a compressible fluid, sound propagates at a finite speed, which affects the temporal evolution of the hydrodynamic interactions by the order of magnitude relation between the time scales of viscous diffusion and sound propagation. The hydrodynamic interactions are characterized by introducing the ratio of these time scales as an interactive compressibility factor.Comment: 12 pages, 8 figure

    Evaluating the suitability of human-oriented text simplification for machine translation

    Get PDF

    Direct numerical simulation of dispersed particles in a compressible fluid

    Get PDF
    We present a direct numerical simulation method for investigating the dynamics of dispersed particles in a compressible solvent fluid. The validity of the simulation is examined by calculating the velocity relaxation of an impulsively forced spherical particle with a known analytical solution. The simulation also gives information about the fluid motion, which provides some insight into the particle motion. Fluctuations are also introduced by random stress, and the validity of this case is examined by comparing the calculation results with the fluctuation-dissipation theorem.Comment: 7 pages, 5 figure

    Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    Get PDF
    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore